
Chatbots
SHRIMAI PRABHUMOYE

ALAN W BLACK
SPEECH PROCESSING 11-[468]92

Overview
u Chatbots

u Task Oriented

u Non-Task Oriented Dialog Systems

u Building Dialog Systems

o Retrieval Based

o Similarity Metric

o Generative models

Chatbots
u Designed to simulate how a human would behave as

a conversational partner, thereby passing the Turing

test.

u Chatbots are used for various practical purposes like

customer service, personal assistants or information

acquisition.

Chatbots
u Personal Dialog Assistants

o Siri, Alexa
u Helpline Chatbots

o hotel booking, airline reservation
u Conversational bots

o Zo, Tay, Xiaoice, Facebook M

Eliza was
based on
keyword
matching Parry was Eliza

with an
attitude

Aspects to think about

Aspects to think about
u Persona

o voice, age, gender, background

u Domain

u Scenarios it can handle

u Response for other scenarios

u Variation in input and output

u …

Chatbots - Classes

Task
Oriented

• Clear and explicit
intentions

• The system should have
the capability to
process the intents.

Non-Task
Oriented

• No particular agenda
• “What’s up”, “How are

you doing?”

Task Oriented
u Intents: actions that the user wants the system to

perform
u Slots: arguments you need to fulfill the intent
u Actions: system performs the task

u Eg: “Adds a meeting to your calendar”
u Responses: the utterance said by the system

u Eg: “Meeting has been added”

Task Oriented - Example
u User: I want to add one reminder to switch off the light.
u System: Intent → Add Reminder
u System: Slot → date, time and purpose
u System: When would you like to set the reminder?
u User: In an hour
u System: Slot → 16 Sept at 4.30pm
u System: Action → Set a reminder at 4.30pm on 16 Sept to

switch off the light
u System: I have set a reminder to switch off the light in an

hour.

Task Oriented - Example
u User: I am getting late to class, so I need the next bus

to CMU. I want to reach as fast as possible.
u System: Intent → to go
u System: Slot → date, time, departure_stop, arrival_stop

(today, in the next 10 minutes, -, CMU)
u System: Where would you like to leave from?
u User: I live on Whitman and bartlett
u System: departure_stop → whitman and forbes (Wh-Fo)
u System: Action → Find the next bus from Wh-Fo to CMU
u System: The next bus is 61A in 12 minutes from Wh-Fo

Task Oriented
u Evaluation Metric:

o Task completion success
o Eg: The system was able to give the correct bus

information, the system was able to set an alarm for
the right time.

o Length of dialog
o Eg: The system should not ask too many questions,

too many repetitions etc

Task Oriented - Example
u User: I am getting late to class, so I need the next bus

to CMU. I want to reach as fast as possible.
u System: Intent → to go
u System: Slot → date, time, departure_stop, arrival_stop

(-,-, -, CMU)
u System: What date would you like me to check the bus

for?
u User: Today Sept 12!
u System: When would you like to leave?
u User: In the next 10 min!!

Non Task Oriented
u User1: Hey, what’s up?
u User2: Nothing much. What about you?
u User1: Nothing, just the usual hectic life of CMU.
u User2: Yes, its been so long since we caught up. We

should may be grab some coffee sometime…
u User1: Ya, that’s true. We should definitely meet up

sometime. Ok, I need to run for a class, ping me!
u User2: Sure, bye!

Non Task Oriented
u User1: Hey, have you seen the new Kingsman movie?
u User2: No, what’s it about?
u User1: It’s a science fiction thriller movie. Do you want

to go watch it sometime?
u User2: Ya sure, I like sci-fi movies.
u User1: Let’s watch it over the weekend
u User2: Ok J

Non Task Oriented
u Intents and slots are hard to design
u Can have multiple responses
u Evaluation:

o Engagement
o User satisfaction
o Length of dialog
o …

Chatbots Architectures
u Rule-based

o Used very often to build some aspects of personal assistants.
o Eg: “Add ‘Meet Alan’ in my Calendar”

u Corpus-based
u Retrieval Techniques
o Used very often to build helpline chatbots.
o Examples: “How do I install Ubuntu on my machine?”, “I

cannot connect to network. How can I connect to wifi?”
u Generative Models
o Used very often to build conversational chatbots.
o Example: “How are you doing?”, “Can you tell me a secret?”

Eliza: Weizenbaum (1966)
u Men are all alike.
u IN WHAT WAY
u They're always bugging us about something or other.
u CAN YOU THINK OF A SPECIFIC EXAMPLE
u Well, my boyfriend made me come here.
u YOUR BOYFRIEND MADE YOU COME HERE
u He says I'm depressed much of the time.
u I AM SORRY TO HEAR YOU ARE DEPRESSED

(Jurafsky, 2019)

Eliza pattern/transform
rules
u (* YOU * ME) [pattern]
u (WHAT MAKES YOU THINK I PAT YOU) [transform]
u Example

uYou hate me
uWHAT MAKES YOU THINK I HATE YOU

(Jurafsky, 2019)

Eliza Rules

Pattern

(Jurafsky, 2019)

𝐾			 𝐷$ 		 𝑅$,	$ 			 𝑅$,	' 		…			 𝑅$,)$

							 𝐷' 		 𝑅',	$ 			 𝑅',	' 		…			 𝑅',)'
.
.
.

					 𝐷+ 		 𝑅+,	$ 			 𝑅+,	' 		…			 𝑅+,)+

Keyword Ranked list of transforms

Eliza Architectures
u Examine each word w in user sentence

uReturn the w with highest keyword rank
u If w exists:

uCheck each rule for w in ranked order
uChoose first one that matches sentence
uApply transform

u If no keyword applies, either
uApply the transform for the “NONE” key, or
uGrab an action off the memory queue

(Jurafsky, 2019)

Eliza Example
u I know everybody laughed at me

u “I” is a very general keyword:
u (I ((I *) (You say you 2) …)
uYOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU
u “Everbody” is much more interesting (someone using

universals like everybody/always is probably “referring to
some quite specific event or person”)

uWHO IN PARTICULAR ARE YOU THINKING OF?
u Implementation: keywords stored with their rank

u Everybody 5 (transformation rules)
u I 0 (transformation rules)

(Jurafsky, 2019)

None
u PLEASE GO ON
u THAT’S VERY INTERESTING
u I SEE

(Jurafsky, 2019)

Retrieval Techniques
u Chatbots built using this technique:

uCleverbot
uXiaoice

u Database of conversations:
uHuman-human chats
uHuman-machine chats

u Find a turn in the database that matches the user’s
input, then give the response of that turn from the
database.

Retrieval Techniques
u Fixed set of query-response pairs in the database.
u Representation of the query and the database.
u Metric to compare and evaluate the best fitting

response.

Retrieval Pipeline

Database
RepresentationInput

Response

Comparison
MetricRepresentation

Representation
u Words themselves!
u Term Frequency – Inverse Document Frequency (Tf-Idf)
u N-grams
u Word Vectors

Representation
u Words themselves!
u Term Frequency – Inverse Document Frequency (Tf-Idf)
u N-grams
u Word Vectors

TF-IDF
u Term Frequency (TF):

umeasures how frequently a term occurs in a
document.

u term frequency 𝑡𝑓 𝑡, 𝑑 of term 𝑡 in document 𝑑 is
defined as the number of times that 𝑡 occurs in 𝑑.

uThe term frequency is often divided by the
document length.

𝑡𝑓 𝑡, 𝑑 = 	𝑓0,1 2 𝑓03,1

�

03∈1

6

Term Frequency
u Raw term frequency is not what we want:

uA document with 10 occurrences of the term is more
relevant than a document with 1 occurrence of the
term.

uBut not 10 times more relevant.
u Relevance does not increase proportionally with term

frequency.

Inverse Document
Frequency
u Are all words equally informative?
u Rare terms are more informative

u Example: stop words like the, a, and, that etc
u Suppose the input contains a rare term like

phagocytosis. (The term is rare in the database)
u A document containing the term phagocytosis is very

likely to be relevant to the input
u We want a high weight for rare terms like phagocytosis.

Inverse Document
Frequency
u measure of how much information the word provides,

that is, whether the term is common or rare across all
documents.

u Total number of documents (𝑵) divided by the count
of the number of documents that contain term 𝒕

𝑖𝑑𝑓 𝑡, 𝐷 = log
𝑁

1 +	|	 𝑑	 ∈ 	𝐷: 	𝑡	 ∈ 𝑑 |

TF-IDF Example
u Document (d) → 100 words, term “dog” appears 5

times in d.

𝑡𝑓 “𝑑𝑜𝑔”, 𝑑 =
5
100

u Suppose, D =10 million and “dog” appears in 999 of
them

𝑖𝑑𝑓(“𝑑𝑜𝑔”, 𝐷) = 	 log
10000000	
1 + 999

= 4

u TF-IDF score: 0.05 * 4 = 0.12

TF-IDF Representation

Vocab Tf-Idf

“the” 0.8

“dog” 0.3

“and” 0.5

“play” 0.6

“UNK” 0.1

the dog and the cat play

0.8 0.3 0.5 0.8 0.1 0.6

Vocabulary Table
Representation of the input

TF-IDF Limitations
u Cannot work for synonyms

u I find it very common and I find it very prosaic could
have very different representations depending on the TF-
IDF of common and prosaic

u Does not take context into account
u Doesn’t consider the ordering of words in the query or

the document
u Bob loves Mary and Mary loves Bob have the same

representations!

Representation
u Words themselves!
u Term Frequency – Inverse Document Frequency (Tf-Idf)
u N-grams
u Word Vectors

N-grams
u Unigram: 𝑃(𝑤)

u Still does not take context into account
u Bigram: 𝑃(𝑤$, 𝑤')

u𝑃 “𝐼”, “𝑎𝑚” and 𝑃 “𝐼”, “𝑖𝑠”
u Takes one word context

u Trigram: 𝑃(𝑤$,	𝑤', 𝑤S)
u Takes two word context

u N-gram: 𝑃(𝑤$,	𝑤', 	 … , 𝑤+)

N-grams
u Takes context into account
u You can set the decide the window size of context

Similarity Metric
u Jaccard Similarity Coefficient
u Cosine Similarity
u Euclidean Distance
u Pearson Similarity
u How it works:

uA = representation of the input and
uB = representation of the query in the database.
u For each query in the database, we calculate similarity

score and select the query which has max score.
uWe return the response of this query

Jaccard Similarity
𝐽 𝐴, 𝐵 =

|	𝐴	 ∩ 	𝐵	|
|	𝐴	 ∪ 	𝐵	|

u measures similarity between finite
sample sets

u 0	 ≤ 𝐽 𝐴, 𝐵 ≤ 1
u Can be used when representations are

words themselves.
u Cannot be used with vector representations.

Jaccard Similarity Example
u Input: What food do you like?
u Document 1: I like Indian food.
u Document 2: I hate Spanish food.
u 𝐼 = 	 𝑊ℎ𝑎𝑡, 𝑓𝑜𝑜𝑑, 𝑑𝑜, 𝑦𝑜𝑢, 𝑙𝑖𝑘𝑒, ?
u 𝐷1 = 	 𝐼, 𝑙𝑖𝑘𝑒, 𝐼𝑛𝑑𝑖𝑎𝑛, 𝑓𝑜𝑜𝑑, .
u 𝐷2 = 	 𝐼, ℎ𝑎𝑡𝑒, 𝑆𝑝𝑎𝑛𝑖𝑠ℎ, 𝑓𝑜𝑜𝑑, .

u 𝐽 𝐼, 𝐷1 = 	 fghi,jkk1
lmn0,jkk1,1k,okp,fghi,?,q,q+1gn+,.

= 	 '
r
= 0.222

u 𝐽 𝐼, 𝐷2 = 	 jkk1
lmn0,jkk1,	1k,okp,fghi,?,q,mn0i,stn+gum,.

= 	 $
$v
= 0.1	

Cosine Similarity
cos 𝜃 = 	

𝜜	. 𝜝
𝑨 ' 𝑩 '

u Measures similarity between two vectors
u Values range between -1 and 1
u -1 is perfectly dissimilar
u 1 is perfectly similar

Cosine Similarity
u A = “I love dogs” = [0.6, 0.4, 0.9]
u B = “You are smart” = [0.5, 0.7, 0.1]

u cos 𝐴, 𝐴 = v.~∗v.~�v.�∗v.��v.r∗v.r
v.~	∗v.~�v.�	∗v.��v.r	∗v.r� 	∗	 v.~∗v.~�v.�∗v.��v.r∗v.r� = 1.0	

u cos 𝐴, 𝐵 = 	 v.~	∗v.��v.�∗v.��v.r∗v.$
v.~∗v.~�v.�∗v.��v.r∗v.r� 	∗	 v.�∗v.��v.�∗v.��v.$∗v.$� = 0.6708

u Note: If you use the TF-IDF representation then cos
wont be negative.

u In case vectors are of different lengths then you pad
the smaller length vector with 0s

Euclidean Distance
𝑑 𝑎, 𝑏 = 	 𝑎$ 	−	𝑏$ ' +	…+	 𝑎+ 	−	𝑏+ '�

= 	 2 𝑎g 	−	𝑏g '
+

g�$

�

u Measures similarity between two vectors
u Select the query with least distance from the input

Euclidean Distance
u Euclidean distance is large for different length vectors
u Example: Let a document 𝑑 = 𝑑$;	𝑑$
u 𝑑 is 𝑑$ concatenated to itself
u 𝑑 and 𝑑$ have the same content
u The Euclidean distance between them can be quite

large
u Angle between them is 0, corresponding to maximal

similarity.

Retrieval Pipeline

Database
RepresentationInput

Response

Comparison
MetricRepresentation

Example

“How can I connect to WiFi”
“Go to Settings → Wifi. Select …”

“How do I install Ubuntu 16.04”
“Download Ubuntu image …”

“How can I install Java”
“Download the jdk …”

“Which NVIDIA driver do I need
for GTX 1080 Ti”
“sudo apt install nvidia-381”

Database

“How do I connect to WiFi”

Input

Retrieval Pipeline

Database
RepresentationInput

Response

Comparison
MetricRepresentation

Database Representation
“How can I connect to WiFi”
“Go to Settings → Wifi. Select …”

“How do I install Ubuntu 16.04”
“Download Ubuntu image …”

“How can I install Java”
“Download the jdk …”

“Which NVIDIA driver do I need
for GTX 1080 Ti”
“sudo apt install nvidia-381”

Vocab Tf-Idf Vocab Tf-Idf

How 3/22*log(1/2) Java
can Which
I NVIDIA
connect driver

to need
Wifi for
do GTX
install 1080
Ubuntu Ti

16.04 UNK

Total
Query
Words =
22

Database

Database Representation
How can I connect to WiFi
0.6 0.3 0.4 0.4 0.4 0.1

Which NVIDIA driver do I need for GTX 1080 Ti
0.2 0.1 0.06 0.2 0.4 0.5 0.3 0.01 0.02 0.04

How do I install Ubuntu 16.04
0.6 0.2 0.4 0.35 0.1 0.05

How can I install Java
0.6 0.3 0.4 0.35 0.15

Retrieval Pipeline

Database
RepresentationInput

Response

Comparison
MetricRepresentation

Input Representation

How do I connect to WiFi
0.6 0.2 0.4 0.4 0.4 0.1

u Use the TF-IDF counts calculated over the database

Retrieval Pipeline

Database
RepresentationInput

Response

Comparison
MetricRepresentation

Compare

How do I connect to WiFi
0.6 0.2 0.4 0.4 0.4 0.1

u Lets compare using cosine similarity
u 𝐼 = 	 0.6, 0.2, 0.4, 0.4, 0.4, 0.1
u 𝐷1 = 0.6, 0.3, 0.4, 0.4, 0.4, 0.1
u 𝐷2 = 	 0.6, 0.2, 0.4, 0.35, 0.1, 0.05
u cos 𝐼, 𝐷1 = 	0.9949069
u cos 𝐼, 𝐷2 = 	0.9472593
u cos 𝐼, 𝐷1 	> 	 cos 𝐼, 𝐷2
u Hence, we select query 𝐷1 and return its response from

the database “Go to Settings → Wifi. Select … ”

How can I connect to WiFi
0.6 0.3 0.4 0.4 0.4 0.1

How do I install Ubuntu 16.04
0.6 0.2 0.4 0.35 0.1 0.05

Advantages of
Retrieval Systems
u No grammatical or meaning less errors as we store the

answers
u Works very well for domain specific problems

u Eg: chatbot for customer care for a business

Limitations of
Retrieval Systems
u We have a constrained set of responses.
u No variance in the response.
u Cannot handle novel queries.

Summary
u Task Oriented

o Intents, Slots, Responses. Evaluation by task
completion.

u Non-Task oriented
o Intents and evaluation are hard to define.

u Retrieval Techniques
o TF-IDF representation and cosine similarity

u Limitations of Retrieval Techniques

Generative Models
u Next Class!

