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Applications

e Dialogue System
e Persona, style of responses (polite, authority),
content of responses, topic of conversation

e Recommend polite emails

e Story Generation
e plot, ending, sentiment, topic, persona

e Report Generation (websites, Wikipedia articles)
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Abstract

Style transfer is the task of rephrasing the
text to contain specific stylistic proper-
ties without changing the intent or affect
within the context. This paper introduces
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These goals have motivated a considerable
amount of recent research efforts focused at “con-
trolled” language generation—aiming at separat-
ing the semantic content of what is said from
the stylistic dimensions of how it is said. These
include approaches relying on heuristic substitu-
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Abstract

This paper introduces a new task of politeness
transfer which involves converting non-polite
sentences to polite sentences while preserving
the meaning. We also provide a dataset of
more than 1.39 million instances automatically
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Rao and Tetreault, 2018; Xu et al., 2012; Jham-
tani et al., 2017) has not focused on politeness as a
style transfer task, and we argue that defining it is
cumbersome. While native speakers of a language
and cohabitants of a region have a good working
understanding of the phenomenon of politeness
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Abstract

Automatic storytelling is challenging since it requires gener-
ating long, coherent natural language to describes a sensible
sequence of events. Despite considerable efforts on automatic
story generation in the past, prior work either is restricted in
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Contribution

e Controlled Generation Schema connects prior work

e organize prior work

e Schema contains 5 modules

e |dentify any architecture as belonging to one of these modules
e Schema can be used with any algorithmic paradigm

e Collate knowledge about different techniques

e Insights into the advantages of techniques
e Pave way for new architectures
e Provide easy access to comparison
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1. Decompose

e h, decomposed into
subspaces

e Provides interpretable representations
e Input should contain signal of

control attribute
e Supervision on decomposed space

[Liu and Lapata (2018), Romanov et al. (2019), Balachandran et al. (2020)]
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3. Arithmetic or Linear Transform

4. Stochastic Changes



Sequential Input

1. Arithmetic or Linear
Transform B —

O it = [Xt; S]

@ Sequential Input
(x,)

o it =X, +S
e Changes the input to the generation itself
and not the context

e Not shown promising results so far
[Noraset et al. (2017), Zhou et al. (2018), Prabhumoye et al. (2019)]



Generator Operations

1. Controlled Generator Operations
o ¢,=10Oc¢,_;+1,0¢ +tanh(W,d))

e d, = dialogue act representation, change made to LSTM cell
e Add dialogue act information in the generation process

e h,=tanh(W,x,+r,0Uh,_,+s,06Yg+q, & ATZE!")T)

e S,=goal select gate; q, = item select gate, GRU cell
e recipe generation task

[Gan et al. (2017), Kiddon et al. (2016), Wen et al. (2015)]
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Generator Operations

2. Recurrent Neural Networks
o LSTM, GRU
3. Transformers
4. Pre-trained language models
e BERT, GPT-2, BART, XL-Net

Generator
(&) @




Output

1. Attention oLz O
e Focus on source ] oo
sequence
e Global Attention
e | ocal Attention
e Multi-headed Attention

[Bahdanau et al. (2015), Luong et al. (2015), Vaswani et al. (2017)]
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Output

1. Attention
e most effective - especially self and cross
e mostly control attribute tokens have been added to
source sequence for attention
e under explored for controlling attributes but has a
lot of potential

[Sudhakar et al. (2019), Dinan et al. (2018), Zhang et al. (2018)]
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2. External Feedback
e discriminator has to be jointly trained like GAN
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Output

2. External Feedback
e discriminator has to be jointly trained like GAN

N
=0

3. Arithmetic or linear transform

Discriminator




Training Objective
| @_, g Oecive @
1. General Loss ®
e Cross Entropy Loss
e Unlikelihood Loss
e Decoding Strategies
e Used with any generation task

2. Classifier Loss
e design multiple classifier for any control attributes

[Welleck et al. (2020), Prabhumoye et al. (2018), Yang et al. (2018)]



Training Objective

Training Objective
(&)

3. KL Divergence ®

e used with stochastic | Generator
changes

4. Task Specific Loss
e design a loss for specific task
(need not involve a classifier)
e Strategy Loss
e Coverage Loss
e Structure Loss




Future Work

e Empirical evaluation of schema
e to understand quantitatively which modules are
more effective in controlling attributes
e task-related architectures

e add these control techniques to pre-trained
models like BART, T5 etc



