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Did you like the 
movie?

Yeah, I loved the movie!

Control Attributes: 
positive

Control Attributes: 
negative

No, I hated it!

Controllable Text Generation allows 
us to add “knobs” to control the 

attributes of the text to be generated



Applications
● Dialogue System 
● Persona, style of responses (polite, authority), 

content of responses, topic of conversation 
● Recommend polite emails 
● Story Generation 
● plot, ending, sentiment, topic, persona 

● Report Generation (websites, Wikipedia articles)
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Contribution
● Controlled Generation Schema connects prior work  

● organize prior work 
● Schema contains 5 modules 
● Identify any architecture as belonging to one of these modules 
● Schema can be used with any algorithmic paradigm 

● Collate knowledge about different techniques 
● Insights into the advantages of techniques 
● Pave way for new architectures 
● Provide easy access to comparison
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External Input
2. External Feedback 

● regularizer to control  
● must be jointly trained 
● can be useful with decompose 

technique

he

3. Arithmetic or Linear Transform 

4. Stochastic Changes



Sequential Input
1. Arithmetic or Linear                                    
Transform 

●  

●  
● Changes the input to the generation itself              

and not the context 
● Not shown promising results so far

x̃t = [xt; s]
x̃t = xt + s

[Noraset et al. (2017), Zhou et al. (2018), Prabhumoye et al. (2019)]  



Generator Operations
1. Controlled Generator Operations 

●  

●  = dialogue act representation, change made to LSTM cell 
● Add dialogue act information in the generation process 

●  

●  = goal select gate;  = item select gate, GRU cell 
● recipe generation task

ct = ft ⊙ ct−1 + it ⊙ c̃t + %&'((Wddt)
dt

h̃t = %&'((Whxt + rt ⊙ Uhht−1 + st ⊙ Yg + qt ⊙ (1T
LZEnew
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[Gan et al. (2017), Kiddon et al. (2016), Wen et al. (2015)]  
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Generator Operations
2. Recurrent Neural Networks 

● LSTM, GRU 
3. Transformers 
4. Pre-trained language models 

● BERT, GPT-2, BART, XL-Net



Output
1. Attention 

● Focus on source 
sequence 

● Global Attention 
● Local Attention 
● Multi-headed Attention

[Bahdanau et al. (2015), Luong et al. (2015), Vaswani et al. (2017)]
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Output
1. Attention 

● most effective - especially self and cross 
● mostly control attribute tokens have been added to 

source sequence for attention  
● under explored for controlling attributes but has a 

lot of potential

[Sudhakar et al. (2019), Dinan et al. (2018), Zhang et al. (2018)]
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2. External Feedback 

● discriminator has to be jointly trained like GAN 
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Training Objective
1. General Loss 

● Cross Entropy Loss 
● Unlikelihood Loss 
● Decoding Strategies 
● Used with any generation task 

2. Classifier Loss 
● design multiple classifier for any control attributes

[Welleck et al. (2020), Prabhumoye et al. (2018), Yang et al. (2018)]



Training Objective
3. KL Divergence 

● used with stochastic       
changes 

4. Task Specific Loss 
● design a loss for specific task 

(need not involve a classifier) 
● Strategy Loss 
● Coverage Loss 
● Structure Loss



Future Work
● Empirical evaluation of schema 
● to understand quantitatively which modules are 

more effective in controlling attributes 
● task-related architectures 
● add these control techniques to pre-trained 

models like BART, T5 etc


